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Abstract. We propose a new active learning framework where the ex- 
pert labeler is allowed to decline to label any example. This may be 
necessary because the true label is unknown or because the example be- 
longs to a class that is not part of the real training problem. We show 
that within this framework, popular active learning algorithms (such as 
Simple) may perform worse than random selection because they make so 
many queries to the unlabelable class. We present a method by which any 
active learning algorithm can be modified to avoid unlabelable examples 
by training a second classifier to distinguish between the labelable and 
unlabelable classes. We also demonstrate the effectiveness of the method 
on two benchmark data sets and a real-world problem. 

1 Introduction 

For many classification problems, class labels must be provided by a domain ex- 
pert and are therefore expensive to acquire. The standard approach to classifica- 
tion assumes that all labeled examples are provided up front. Active learning [l] 
attempts to reduce this burden by incrementally selecting only the most useful 
items for labeling. For this to  be effective, the expert labeler is required to assign 
a valid label to whatever items the active learner selects. However, there are cases 
where an item does not fall into any of the specified classes, or the expert may 
be unsure about its classification. Requiring the expert to assign labels for these 
items introduces unnecessary errors into the learning process. Even if the expert 
is allowed to abstain from assigning a label, we find that this situation can cause 
typical active learning algorithms to perform worse than random selection. 

As a concrete example, consider the problem of training an automatic cloud 
mask from satellite images. Given image data from NASA’s Multi-angle Imaging 
Spectrohdiometer (MISR) instrument [2], the goal is to  correctly classify each 
pixel as  either “clear” or “cloudy”. Figure l(a) shows a scene captured by MISR 
over the Sahara desert, containing areas of clouds, clear desert, and a third region 
contaminated by dust. The expert labeler can easily identify the pixels in region 
3 as being neither clear land nor clouds, and therefore irrelevant to the classifier 
goal. Assigning them to either class would be misleading. Figure l(b) shows the 
accuracy of three algorithms when evaluated on the problem of separating cloudy 
and clear pixels. These algorithms will be described more fully in Section 2.1. The 
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Fig. 1. Part of the Sahara Desert captured by MISR’s 70-degree forward-looking cam- 
era on February 6, 2004. The three boxes represent regions that are (1) Cloudy, (2) 
Clear, and (3) Other. On the right is the accuracy achieved by Simple when trained 
on regions 1 and 2 (“Optimal”) as well as Random and Simple when trained on all 3 
regions (region 3 marked as unlabelable). All results were averaged over 100 trials. 

first curve is “Optimal Simple’’ which is the performance achieved by the Simple 
Margin active learning algorithm [3] when trained only on cloudy and clear 
pixels. “Simple” shows the performance of the same algorithm when unlabelable 
(dusty) pixels are included in the training set, and “Random” indicates random 
selection in the presence of unlabelable pixels. The three algorithms were tested 
only on labeled pixels. Simple’s learning rate slowed down significantly because 
it devoted a large percentage (79%) of its queries to unlabelable pixels. In fact, it 
performed much worse than random selection. We will discuss this phenomenon 
in more detail in Section 2.3. 

This paper seeks to address the limitations of current active learning meth- 
ods when unlabelable items are present via two major contributions. First, we 
propose an active learning framework where “unknown” is a valid response from 
the trainer. Second, we present active learning methods that can make effective 
use of this information to improve the efficiency and reduce the cost of active 
learning. Section 2 formalizes the problem of performing active learning and 
highlights the modifications that are necessary when some labels are unknown. 
We present our solution to this problem in Section 3, experimental results in 
Section 4, and key conclusions in Section 5.  



2 Active Learning 

We focus on pool-based active learning, where the learner has access to  a (fixed) 
pool of items for which it can request labels. We assume the existence of a pool 
U = {xi} of unlabeled items. Each xi is a d-dimensional vector in Euclidean 
space, and the items are assumed to  be i.i.d. according to an unknown fixed 
distribution P(z) .  In addition, there exists a binary classification label yi E (51) 
for each xi that is available, upon request, from the expert labeler. The expert 
can be a human or an automated labeler that incurs some cost per query; we 
refer to the expert’s labeling of x as f(x). Let C be the set of items for which 
the learner has already requested labels. On each trial, the active learner selects 
an unlabeled item 2 from U and receives its label, y = f (z). The learner then 
applies its classifier learning algorithm to C U { (z, y)} to train a new model. 

In this section, we first describe a variety of algorithms that have been pro- 
posed and then discuss how the active learning problem changes when unla- 
belable items may exist. 

2.1 Active Learning Algorithms 

Although active learning is not restricted to any single inductive learning tech- 
nique, much of the recent work in this area has focused on active learning for 
support vector machines (SVMs) [4] due to their strong performance on a va- 
riety of problems. An SVM is a binary classifier that constructs a hyperplane 
in d dimensions to separate the two classes. In particular, it  seeks the hyper- 
plane that will maximize the margin, or distance between each class and the 
hyperplane. For classes that are not linearly separable, the SVM implicitly maps 
each point into a higher-dimensional space via a kernel function, which often im- 
proves separability. All active learning methods seek to select the item x which, 
when labeled, will provide the most benefit in terms of an increase in accuracy 
achieved by the model constructed from C U x. 

1. Random: This method selects x E U randomly. It is equivalent to “passive” 
learning, as the algorithm has no input on the order of the items it sees. I t  
serves as a baseline for comparison with active learning algorithms. 

2. Simple Margin (“Simple”) [3]: Simple assumes that the item closest to 
the current hyperplane is likely to be the most helpful for updating the hy- 
perplane in the next trial. This algorithm ranks each example by its distance 
from the hyperplane (computed using the absolute value of the SVM output 
on this example) and then chooses the minimum. 

3. MaxMin Marg in  [3]: Rather than guessing that the item closest to the 
hyperplane will yield the most information, this method aims to empirically 
test which item will be most effective. Let m be the size of the separation be- 
tween the positive and negative classes (the margin) for a given SVM. Then, 
for each z E U ,  this method trains two SVMs: one on C U {(z, $1)) (yield- 
ing m+) and one on C U { (x, -1)) (yielding m-). Finally, MaxMin  selects 
z such that min(m-, m+) is maximized. For efficiency, we only considered 
20% of the queries each trial. 



4. Diverse [5] :  This algorithm attempts to avoid choosing too many similar 
queries by increasing the diversity of the chosen examples. The diversity of 
C u z can be maximized by selecting z whose maximum normalized kernel 
distance to  all of the other labeled examples is minimized. The complete 
method uses a weighted sum of diversity and hyperplane distance, controlled 
by a parameter A, where X = 0 is the equivalent of focusing solely on diversity 
and X = 1 is the same as Simple. We determined that X = 0.5 worked well 
for our experiments. 

5 .  Kernel-farthest-first (KFF)  [6]: This method maximizes the minimum 
distance from x to all x’ E C. This algorithm only works well for a few 
special XOR-type problems, but we included it because it gave interesting 
results in one of our experiments (Section 4). 

2.2 Probabilist ic Active Learning 

Because each of the algorithms described above is a heuristic, it  may not always 
be advantageous to  select the top-ranked query. We considered a variant that as- 
signs a probability to  each query based on the ranking produced by the algorithm 
and then randomly chooses an item according to this distribution. Specifically, 
we normalized the results of each algorithm ACTIVE to a value between 0.0 and 
1.0 (to be maximized). We then assigned the probability of picking each query 
using a Gaussian function, chosen so that queries with a value of 1.0 are about 
100 times more likely to  be picked than ones with a value of 0.0: 

,-4.6(ACTIVE(z) - 1)’ P(92) = 

The next query is chosen according to this distribution. We will use the abbre- 
viation Prob. before the name of an active learning algorithm to designate the 
probabilistic variant. 

2.3 

Each of the existing active learning methods uses a different heuristic to  select 
the next item for labeling, but they were all designed with the assumption that 
the label exists. As shown in Figure 1, when this assumption fails, active learning 
can perform worse than random selection. Therefore, we propose a new model of 
the active learning problem that allows for the possibility of unlabelable items. 

We model the expert labeler as a function f’ that maps items to three pos- 
sible values, yi E { - l , O ,  +l}. A value of 0 indicates that the label is unknown. 
Again, on each trial, the active learner applies a selection function to choose an 
unlabeled item 2 from 2.4. The learner proceeds normally unless f’(x) = 0, in 
which case it acquires no new information and must wait until the following trial 
to make a new request. There are several possible ways to  handle this situation. 

First, the learner could ignore the unlabelable examples. As previously dis- 
cussed, t,his is undesirable because it can cause active learning to perform worse 
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than random selection in terms of learning speed. For example, the Simple al- 
gorithm deliberately selects items that are ambiguous (close to  the current SVM 
hyperplane). When the ambiguous items are not members of the two classes the 
SVM is attempting to learn, Simple will query exactly the items that help it 
the least. This is the case for the MISR example shown in Figure 1. 

Second, the learner could assign all unlabelable examples to  one of the valid 
classes, such as the positive class. This introduces noise into the labels. If the 
unlabeled examples overlap both classes, the SVM is forced to find a much 
more complex solution to successfully separate the classes. Even if they do not 
overlap, the positive class is likely to  have worse generalization performance, 
since i t  includes items that are not true positives. 

Third, another strategy would be to train a multi-class classifier, where the 
unlabelable examples would be assigned to a separate class. For some problems 
this could be effective, but it is not optimal as it is likely to  cause the learner to 
spend time querying and modeling the third class. 

Instead, we propose a model where the learner collects unlabeled items ZE in 
a set R of rejected queries, which it can potentially use to try to  avoid querying 
unlabelable examples in the future. Because the cost of acquiring y must be 
paid regardless of its information value, it  is to  the learner's advantage to avoid 
requesting items that are unlabelable. Correctly predicting which items are likely 
to be labelable is an independent learning problem for which good performance 
will enable much more efficient active learning. 

3 Solution: Biasing Toward Labelable Examples 

We propose an active learner that trains an additional classifier to distinguish 
between the set of examples in C (the labeled set, both positive and negative 
examples) and the examples in R (the set of queries that were rejected as unla- 
belable). The learner then uses this extra classifier, C,  to influence its decision 
about which example should be chosen next. We chose to  make the positive class 
be the labelable class (trained from the examples in 13) and the negative class 
be the unlabelable class (trained using R). 

This method can be used to augment any existing active learning algorithm, 
rather than relying on any one particular algorithm. We formulated two ap- 
proaches to using the results of C improve ACTIVE'S performance: . 

1. Reject Unlabelable (RU): Evaluate all of the examples in the pool using 
the new classifier C. Create a new pool P f  C P of the examples which C 
considers to be labelable, and run ACTIVE on P' to choose the next query. 

2. Labelable Bias (LB): Instead of using a hard cutoff that completely elim- 
inates some examples that may actually labelable, we can use C as a proba- 
bilistic weighting that affects the relative score of each example in the pool. 
LB first uses ACTIVE to rank all of the examples in the pool, then normalizes 
the scores so that they are all in the range [0,1]. Let ~ O ~ ~ [ A C T I V E ( Z ) ]  be the 
normalized result of ACTIVE on example TC. We then maximize the product 
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Fig. 2. M E R  results for two methods that attempt to avoid unlabeled examples. “Op- 
timal Simple” is included for comparison. All results are averaged over 100 trials. 

of norm[ACTIVE(x)] and P(labelable(s). When C is an SVM, P(labelab1elz) 
can be derived by taking the SVM output, clipping values outside the range 
[-1,1] and mapping to the range [0,1] ,  or formally: 

if C ( s )  2 1 

if C(Z) 5 -1 
LB[ACTIVE](Z) G norln[ACTIVE(rc)] . if - 1 < C(Z) < 1 

In our experiments, we trained an SVM for C using the same training parameters 
(e.g. kernel) as was used for ACTIVE. 

Figure 2 shows the results obtained by both of these approaches, when AC- 
TIVE is Simple, on the MISR cloud classification data set shown in Figure 1. 
The figure also includes the results of Simple, Random,  and Op t ima l  Simple 
for comparison. The figure shows both the accuracy and the average number of 
unlabeled examples chosen at each trial. Intuitively, the more unlabelable ex- 
amples that are chosen by the learner, the worse its overall accuracy should be. 
For example, Simple selected the largest number of unlabelable examples, and 
it had the worst performance. Figure 2 shows that both RU-Simple and LB- 
Simple significantly reduced the number of unlabelable examples chosen, and 
they both had higher performance than Random and Simple. 

4 Experimental Results 

When the expert labeler has the option to abstain from providing a label to an 
active learner, it is important for the learner to  be able to avoid making queries 
of that kind so as to maximize the amount of information it receives. To evaluate 
the effectiveness of our proposed approach, we conducted experiments on several 
data sets, with and without unlabelable items. 



4.1 Evaluation Metrics 

To compare the effectiveness of different active learning algorithms, we use 
three evaluation methods. Deficiency [6] seeks to quantify the learner’s over- 
all improvement in learning efficiency as compared to passive learning. Let 
Acct(ACTIVE) be the level of accuracy achieved by active learner ACTIVE at 
trial t .  After n trials (1 5 n 5 IIAl), we calculate the defficiency of ACTIVE, 
normalized against the performance of Random, as 

(1) 
cy=, Acc,(Random) - Acq(.4CTIVE) 

Cy=, Acc,.(Random) - Acct(Random) ’ 
Deff,(ACTIVE) E 

Defficiency compares the area under the learning curve to the accuracy achieved 
by Random after n trials. Smaller values of defficiency (which can be nega- 
tive when n < lU1) indicate more efficient active learning. The defficiency of 
R a n d o m  is, by definition, always 1.0. 

In some cases, however, we are more interested in how quickly the learner 
reaches a specific level of accuracy (p). We define p-trials(ALG) to be the number 
of trials required by ALG to reach accuracy p and p-speed to be the factor of 
improvement with respect to Random,  where larger values of p-speed indicate 
faster convergence: 

p-trials(Random) 
p-trials( ACTIVE) 

pspeed(ACT1VE) 5 

The preceding algorithms are useful for comparing the relative efficiency of 
different active learners. However, we also require a measure that indicates how 
effectively an active learner performs in the presence of unlabeled items. We 
define OptAcci(ACT1VE) as the accuracy that would be obtained by ACTIVE after 
a selection trials, if the algorithm could perfectly avoid unlabeled items. Then 
the label eficiency (Leff) is defined as the algorithm’s performance relative to 
OptAcc, with Random as a lower bound: 

. (3) 
E?=, (ACC~(ACTIVE) - Acci(Random)) 

cy=1 (OptAcci (ACTIVE) - Acci(Random)) 
Leff,(ACTIVE) E 

Thus, larger values are better (closer to optimal). 

4.2 Digit Recognition 

The MNIST data set consists of scanned images of handwritten digits 0 through 
9. Each image is composed of 28x28 pixels, which are the features for that image. 
The goal is to learn to distinguish between different digits, allowing for the wide 
variation that naturally occurs in human handwriting. We used a subset of the 
full data set that contained 10,000 items, 1,000 from each class (digit). For these 
experiments, we focus on learning to separate digits 1 and 7, which is one of the 
more difficult cases. The 8,000 items representing the eight other digits are all 
unlabelable items, since they are neither 1’s nor 7’s and performance on them 



1 Algorithm 

Maxmin 
Diverse 
Prob. Simple 
Prob. Maxmin 
Prob. Diverse 
LB-Simple 
RU-Simple 
LB-Maxmin 
RU-Maxmin 
LB-Diverse 
RU-Diverse 
Prob. LB-Simple 
Prob. RU-Simple 
Prob. LB-Maxmin 
Prob. RU-Maxmir 
Prob. LB-Diverse 
Prob. RU-Diverse 
LB-KFF 

mz 
1.00 
0.61 
5.06 
0.66 
0.69 
0.94 
1.06 
0.47 
0.58 
4.61 
3.57 
0.64 
0.72 
0.57 
0.66 
0.98 
1.12 
0.95 
0.94 
4.26 

95%-trials 
65 
38 

34 
39 
68 

38 
39 

- 

- 

- 

- 
39 
55 
45 
44 
69 

64 
56 

- 

95%-speed 
1.00 
1.71 

1.91 
1.67 
0.96 

1.71 
1.67 

- 

- 

- 

- 
1.67 
1.18 
1.44 
1.48 
0.94 

1.02 
1.16 

- 

GGO 
0.00 
0.42 

0.36 
0.34 
0.07 

0.56 
0.43 

- 

- 

- 
- 

0.39 
0.30 
0.47 
0.37 
0.02 

0.06 
0.07 

- 

# unlabelable chose: 
240 (80%) 
284 (95%) 
242 (81%) 
278 (93%) 
274 (91%) 
237 (79%) 
241 (80%) 
215 (72%) 
199 (G6%) 
108 (36%) 
130 (43%) 
240 (80%) 
237 (79%) 
217 (72%) 
208 (69%) 
127 (42%) 
115 (38%) 
239 (80%) 
240 (80%) 
91 (30%) 

Table 1. Results of experiments on the MNIST data, averaged over 30 runs. The task 
was to learn to separate digits 1 and 7, with all other digits present as unlabeled data. 
The best value in each column is in bold. We omitted results for the three middle 
columns for algorithms that never reached 95% accuracy or performed worse than 
Random. 

is irrelevant. For each experiment, we used a subset of 1500 digits for the pool 
(roughly 150 of each class) and evaluated on a random disjoint set of 1000 test 
digits (all 1’s and 7’s, roughly 500 of each). For our SVM we used an RBF kernel 
with y = 1 and C = 1. 

While this particular problem is contrived, it is very similar to the task of 
creating a new database similar to MNIST: if the images of digits were extracted 
using some automatic process, it is highly likely that these examples would 
sometimes contain items other than digits, such as letters, symbols, or even just 
noise. An active learning algorithm that learned to be sensitive to these extra 
classes could speed up the process of labeling these images. We believe that the 
problem of learning to distinguish between two digits, with other digits thrown 
in as distractions, is a reasonable analogue to this real problem. 

We ran several active learning algorithms on this data set, and for each 
algorithm we tried both the traditional and the probabilistic variation (Prob.), 
with and without RU and LB. Table 1 reports for each algorithm, after 300 
trials, the defficiency, the number of trials required to reach 95% accuracy, the 
corresponding 95%-speed (compared to Random) , the label efficiency, and the 
number of unlabelable examples chosen. 
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Fig. 3. MNIST results, averaged over 30 runs, for Simple and Diverse, compared 
to their optimal performance (no unlabelable examples) and their performance when 
using LB. 

LB-Simple achieves the best defficiency and label efficiency, while Diverse 
achieves 95% accuracy in the least number of trials. Interestingly, LB-KFF is 
the most effective approach for minimizing the number of unlabelable exam- 
ples chosen. However, it has a very poor defficiency score, performing much 
worse than Random. This suggests that strictly minimizing the number of un- 
labelable examples cannot ensure that accuracy will be maximized. However, 
KFF is known to perform poorly on most problems; it is specifically designed 
for a few unusual cases. The overall trend we observe in this table is that RU 
and LB almost always improve defficiency and label eaciency. However, they 
also tend to increase the number of trials required to reach 95% accuracy. 

Figure 3 shows the full learning curves for Simple and Diverse. The opti- 
mal performance, when no unlabelable examples are selected, shows the upper 
bound on performance for each method. Using LB significantly improves the 
performance of each algorithm. (To make all of the graphs in this paper easier 
to read, we are plotting the mean of the accuracies for 20 neighboring trials.) 

4.3 

As another experiment, we tested our algorithms on the dna data set from the 
StatLog repository [7]. The goal of this task is to use the DNA sequence on ei- 
ther side of a splice junction to  distinguish between three classes, corresponding 
to exon/intron boundaries (E1 sites, or “donors”), intron/exon boundaries (IE 
sites, or “acceptors”), and neither. We focus on the binary subproblem of distin- 
guishing between the.two types of splice junctions, in which case we consider the 
remaining examples to be unlabelable. We assigned the E1 sites to the positive 
class and the IE sites to  the negative class. Each feature vector contains 60 DNA 
base pairs, encoded using three binary features. We trained our SVMs using the 
same parameters as those used in the one-vs-one experiments by Hsu and Lin 
[SI: namely an RBF kernel with y = 2-6 and C = 8. Each experiment was run 
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Algorithm 
Random 
Simple 
Maxmin 
Diverse 
Prob. Simple 
Prob. Maxmin 
Prob. Diverse 
LB-Simple 
RU-Simple 
LB-Maxmin 
RU-Maxmin 
LB-Diverse 
RU-Diverse 
Prob. LB-Simple 
Prob. RU-Simple 
Prob. LB-Maxmin 
Prob. RU-MaxmiI 
Prob. LB-Diverse 
Prob. RU-Diverse 

mGi 
1.00 
0.80 
1.65 
1.23 
0.78 
0.91 
1.00 
0.30 
0.35 
1.28 
1.01 
0.99 
0.84 
0.59 
0.56 
0.85 
0.70 
0.94 
0.94 

9O%-triak 
125 
120 
- 
- 

112 
127 
136 
65 
72 
- 
- 

142 
111 
85 
85 
107 
99 
126 
124 

9O%-speec 
1.00 
1.04 
- 
- 

1.12 
0.98 
0.92 
1.92 
1.74 
- 
- 

0.88 
1.13 
1.47 
1.47 
1.17 
1.26 
0.99 
1.01 

Leff300 
0.00 
0.19 
- 

.-  
0.25 
0.13 
0.00 
0.67 
0.63 
- 
- 

0.01 
0.15 
0.47 
0.50 
0.23 
0.46 
0.08 
0.08 

+ unlabelable choser 
160 (53%) 
216 (72%) 
197 (66%) 
232 (77%) 
194 (65%) 
155 (52%) 
168 (56%) 
106 (35%) 
86 (29%) 
31 (10%) 
85 (28%) 
187 (62%) 
160 (53%) 
114 (38%) 
98 (33%) 
84 (28%) 
78 (26%) 
158 (53%) 
157 (52%) 

Table 2. Results of experiments on the DNA data, averaged over 30 runs. The task was 
to learn to separate splice boundaries. Note that LB-KFF is missing, and LB-diverse 
is using 0.75 instead of 0.5. 

on a pool of 1000 examples chosen from the training set of 2000 examples (464 
positive, 485 negative, 1051 unlabelable) and tested on the labelable examples 
from the test set (303 positive, 280 negative). 

Table 2 reports on the results with the same set of algorithms as in the 
previous problem. In this case, the LB-Simple algorithm is the clear winner 
according to  all three of our evaluation metrics. For this data set, both the LB 
and RU approaches improve the performance of all six active learning algo- 
rithm variants in the presence of unlabelable examples. Again, the algorithm 
that chooses the fewest unlabelable examples, LB-Maxmin in this case, is not 
the one with the best performance. Unlike in the previous experiment, LB and 
RU did not increase the number of trials required to reach the cutoff we chose, 
in this case 90% accuracy. 

4.4 

The data set shown in Figure 1, which we are making available from our web- 
site [9], was collected by the MISR instrument over the Sahara Desert. With 
the help of an atmospheric scientist, we identified three regions in the image 
corresponding to clouds, clear land, and dust, and extracted feature vectors for 
2,000 pixels from each of those three regions. The feature vector for each pixel 
consisted of the bidirectional reflectance factor for each pixel and a subset of the 
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Algorithm 
Random 
Simple 
Maxmin 

- 
0.44 
0.23 
0.37 

- 
0.79 
0.81 
0.59 
0.64 

- 

- 

- 
0.45 
0.41 

Prob. Maxmin 
Prob. Diverse 
LB-Simple 
RU-Simple 
LB-Maxmin 
RU-Maxmin 
LB-Diverse 
RU-Diverse 
Prob. LB-Simple 
Prob. RU-Simple 
Prob. LB-Maxmin 
Prob. RU-Maxmir 
Prob. LB-Diverse 
Prob. RU-Diverse 

95 (32%) 

112 (37%) 

35 (12%) 

92 (31%) 

88 (29%) 

66 (22%) 
103 (34%) 
87 (29%) 

86 (29%) 
36 (12%) 
41 (14%) 
90 (30%) 
89 (30%) 

98 (33%) 

Deff3oo 
1.00 
1.63 
7.46 
0.82 
0.76 
1.03 
0.81 
0.87 
0.80 
7.52 
6.33 
0.67 
0.67 
0.60 
0.57 
1.12 
1.07 
0.80 
0.82 

74 
- 
- 

52 
42 
43 
41 
- 
- 
57 
66 

95%-trials 1 95%-speed 
71 I 1.00 

0.96 
- 

- 
1.37 
1.69 
1.65 
1.73 
- 

- 
1.25 
1.08 

- - I -  - 

-++--%- 
- I -  

Leff300 )# unlabelable chose 
91 (30%) 
237 (79%) 
162 (54%) 

Table 3. Results of experiments on the MISR data, averaged over 30 runs. The task was 
to learn to separate cloudy from clear pixels, with dust pixels marked as unlabelable. 

pixels within a 5x5 neighborhood, from four different spectral bands and from 
cameras viewing the scenes from three different angles, yielding 156 real-valued 
features per example. In all of our experiments, we chose 1000 example for the 
training pool and a disjoint set of 1000 examples for the test set. For our SVM 
we used an RBF kernel with y = 1 and C = 1. 

We have already shown that both the LB and RU approaches improve the 
performance of Simple on this problem (Figure 2), and Table 3 reports on our 
complete results for all other algorithms. In this case, the probabilistic variant 
Prob. RU-Simple has the lowest defficiency and best 95%-speed, while RU- 
Diverse has the best label efficiency. Once again, LB-Maxmin selects the 
fewest unlabelable examples but had a poor learning rate. 

5 Conclusions and Future Work 

Active learning enables the application of machine learning methods to  problems 
where it is difficult or expensive to acquire expert labels. A key barrier to the use 
of current active learning methods is that it is not always realistic to assume that 
the expert labeler will be willing (or able) to assign a label to every example. 
We showed that in some cases, active learning algorithms can actually perform 
worse than passive learning when a significant class of examples is unlabelable. 
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We have proposed a new active learning framework where the expert labeler 
is allowed to  decline to  label any example, and where the learner attempts to  
model this unlabelable class t o  avoid making more queries that return no useful 
information. We have presented a straightforward method by which any active 
learning algorithm can be modified t o  avoid unlabelable examples by training 
a second classifier to  distinguish between the labelable and unlabelable classes. 
This method should bring us closer to  the goal of applying active learning to 
real-world problems. 

In this paper, we have focused on binary classification problems with some 
unlabelable examples present. In the future, this could be extended to  the more 
difficult problem where the unlabelable examples are precisely those examples 
that are right on the border between two classes (e.g. very near an SVM’s decision 
hyperplane). 
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